covid 19 Data Visualization
Manuela da Cruz Chadreque
10 Dezember 2020
import pandas as pd
import numpy as np
import plotly.express as px
import matplotlib.pyplot as plt
print('modules are imported')
url='https://datahub.io/core/covid-19/r/countries-aggregated.csv'
df=pd.read_csv(url)
df.head()
df.tail()
df.shape
df=df[df.Confirmed>0] #Data related to each country from the first cofirmed cases
df.head()
df[df.Country=='South Africa']
fig=px.choropleth(df, locations='Country',locationmode='country names', color='Confirmed', animation_frame='Date')
fig.update_layout(title_text='Global Spread of Covid19')
fig.show()
fig1=px.choropleth(df, locations='Country',locationmode='country names', color='Deaths', animation_frame='Date')
fig1.update_layout(title_text='Global Deaths of Covid19')
fig1.show()
df_sa=df[df.Country=='South Africa']
df_sa.head()
let's select the columns that we need
df_sa=df_sa[['Date','Confirmed']]
df_sa=df_sa[df.Confirmed>0]
df_sa.head()
calculating the first derivation of confrimed column
df_sa['Infection Rate']=df_sa['Confirmed'].diff()
df_sa.head()
px.line(df_sa, x='Date', y=['Confirmed','Infection Rate'])
df_sa['Infection Rate'].max() #Describe how massive covid19 was in China
df.head()
countries=list(df['Country'].unique())
max_infection_rates=[]
for c in countries:
MIR=df[df.Country==c].Confirmed.diff().max()
max_infection_rates.append(MIR)
print(max_infection_rates)
df_MIR=pd.DataFrame()
df_MIR['Country']=countries
df_MIR['Max Infection Rate']=max_infection_rates
df_MIR.head()
px.bar(df_MIR,x='Country',y='Max Infection Rate', color='Country', title='Global Maximum Infection', log_y=True)
sa_festive_season_start_date = '2020-12-15'
sa_festive_season_end = '2021-01-05'
df.head()
let's get data related to italy
df_sa=df[df.Country=='South Africa']
lets check the dataframe
df_sa.head()
let's calculate the infection rate in South Africa
df_sa['Infection Rate']=df_sa.Confirmed.diff()
ok! now let's do the visualization
fig=px.line(df_sa, x='Date', y='Infection Rate', title="Festive Season in South Africa")
fig.add_shape(
dict(
type='line',
x0=sa_festive_season_start_date,
y0=0,
x1=sa_festive_season_start_date,
y1=df_sa['Infection Rate'].max(),
line=dict(color='red', width=2)
)
)
fig.add_annotation(
dict(
x=sa_festive_season_start_date,
y=df_sa['Infection Rate'].max(),
text='starting festive season'
)
)
fig.add_shape(
dict(
type='line',
x0=sa_festive_season_end,
y0=0,
x1=sa_festive_season_end,
y1=df_sa['Infection Rate'].max(),
line=dict(color='red', width=2)
)
)
fig.add_annotation(
dict(
x=sa_festive_season_end,
y=df_sa['Infection Rate'].min(),
text='End of festive season'
)
)
df_sa.head()
let's calculate number of active cases day by day
df_sa['Deaths Rate']=df_sa.Deaths.diff()
df_sa.head()
fig=px.line(df_sa,x='Date',y=['Infection Rate', 'Deaths Rate'])
fig.show()
df_sa['Infection Rate']=df_sa['Infection Rate']/df_sa['Infection Rate'].max()
df_sa['Deaths Rate']=df_sa['Deaths Rate']/df_sa['Deaths Rate'].max()
let's check the dataframe again
df_sa.head()
now let's plot a line chart to compare COVID19 national lockdowns impacts on spread of the virus and number of active cases
fig=px.line(df_sa,x='Date',y=['Infection Rate', 'Deaths Rate'])
fig.show()
fig=px.line(df_sa, x='Date', y='Deaths Rate', title="Festive Season Deaths in South Africa")
#fig=px.line(df_sa,x='Date',y=['Infection Rate', 'Deaths Rate'])
fig.add_shape(
dict(
type='line',
x0=sa_festive_season_start_date,
y0=0,
x1=sa_festive_season_start_date,
y1=df_sa['Infection Rate'].max(),
line=dict(color='red', width=2)
)
)
fig.add_annotation(
dict(
x=sa_festive_season_start_date,
y=df_sa['Infection Rate'].max(),
text='starting festive season'
)
)
fig.add_shape(
dict(
type='line',
x0=sa_festive_season_end,
y0=0,
x1=sa_festive_season_end,
y1=df_sa['Infection Rate'].max(),
line=dict(color='red', width=2)
)
)
fig.add_annotation(
dict(
x=sa_festive_season_end,
y=df_sa['Infection Rate'].min(),
text='End of festive season'
)
)
Nigeria_season_start_date = '2020-12-15'
Nigeria_season_a_month_later = '2021-01-05'
let's select the data related to Nigeria
df_Nigeria=df[df.Country=='Nigeria']
let's check the dataframe
df_Nigeria.head()
selecting the needed column
df_Nigeria['Infection Rate']=df_Nigeria.Confirmed.diff()
let's check it again
df_Nigeria.head()
let's calculate the infection rate in Germany
df_Nigeria['Infection Rate']=df_Germany.Confirmed.diff()
let's check the dataframe
df_Nigeria.head()
now let's plot the line chart
fig=px.line(df_Nigeria, x='Date', y='Infection Rate', title="Festive Seasnon in Nigeria")
fig.add_shape(
dict(
type='line',
x0=Nigeria_season_start_date,
y0=0,
x1=Nigeria_season_start_date,
y1=df_Nigeria['Infection Rate'].max(),
line=dict(color='yellow', width=2)
)
)
fig.add_annotation(
dict(
x=Nigeria_season_start_date,
y=df_Nigeria['Infection Rate'].max(),
text='starting festive season'
)
)
fig.add_shape(
dict(
type='line',
x0=Nigeria_season_a_month_later,
y0=0,
x1=Nigeria_season_a_month_later,
y1=df_Nigeria['Infection Rate'].max(),
line=dict(color='yellow', width=2)
)
)
fig.add_annotation(
dict(
x=Nigeria_season_a_month_later,
y=df_Nigeria['Infection Rate'].min(),
text='a month later'
)
)
df_Nigeria['Deaths Rate']=df_Nigeria.Deaths.diff()
df_Nigeria.head()
fig=px.line(df_Nigeria,x='Date',y=['Infection Rate', 'Deaths Rate'])
fig.show()
let's do some scaling
df_Nigeria['Infection Rate']=df_Nigeria['Infection Rate']/df_Nigeria['Infection Rate'].max()
df_Nigeria['Deaths Rate']=df_Nigeria['Deaths Rate']/df_Nigeria['Deaths Rate'].max()
fig=px.line(df_Nigeria, x='Date', y='Infection Rate', title="Before and After Festive Season in Nigeria")
fig.add_shape(
dict(
type='line',
x0=Nigeria_season_start_date,
y0=0,
x1=Nigeria_season_start_date,
y1=df_Nigeria['Infection Rate'].max(),
line=dict(color='yellow', width=2)
)
)
fig.add_annotation(
dict(
x=Nigeria_season_start_date,
y=df_Nigeria['Infection Rate'].max(),
text='starting date Festive Season'
)
)
fig.add_shape(
dict(
type='line',
x0=Nigeria_season_a_month_later,
y0=0,
x1=Nigeria_season_a_month_later,
y1=df_Nigeria['Infection Rate'].max(),
line=dict(color='yellow', width=2)
)
)
fig.add_annotation(
dict(
x=Nigeria_season_a_month_later,
y=df_Nigeria['Infection Rate'].min(),
text='End of festive season'
)
)